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ABSTRACT

Results on the asymptotic behavior of solutions of the Cauchy problem
dujot = Lu as t —» oo are stated, both for nondegenerate and degenerate elliptic
second order operator L. The Dirichlet problem for degenerate L is also studied.
The methods used depend on a detailed study of the behavior of solutions
of stochastic differential equations.

This work is concerned, for the most part, with the asymptotic behavior of
solutions of the Cauchy problem for second order (possibly degenerate) parabolic
equations. The methods used are based on recent results in stochastic differential
equations. The Dirichlet problem for degenerate elliptic equations is treated
briefly by the same methods.

The results of Section 1 are due to Friedman [2]; the results of Sections 2, 3
are due to Friedman and Pinsky [3], [4]. Finally, a detailed account of the

results briefly described in Section 4 will appear in a forthcoming paper by Fried-
man and Pinsky [5].

1. Comparison with the heat equations

Consider the Cauchy problem

ou 1 - m
1D ﬂ-——Lu:f § U(x)a 6 +:—Z1b(X)_; (t>0,xeR™.

(1.2) u(0,x) = f(x) (xeR™.

We wish to compare the solution u with the solution v of the heat equation
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(t>0,xeR™
subject to the same initial condition (1.2). We assume:

(A)) (a;;(x)) is a positive definite matrix for each x, and a;}(x), by(x) are uni-
formly Holder continuous and locally Lipschitz continuous. This implies that
there is an m x m matrix a(x) = (g;;(x)) satisfying go* = (q;;) (¢* = transpose
of ¢) which is locally Lipschitz continuous.

(A;) There is a constant matrix ¢ = (d;;) such that

C
X))~ € — =
o) =21 £ T
C
| < -
'b;(x)l = (1+[x|)1+6
for some 0<éd<1, C>0.
(A;) For all x, X in R™,
(1.3) | f®) —f®| £ Co|x—x[" (0<y=2,C>0).

If fis any continuous function bounded by C,exp[e l X |2] for any ¢ > 0 (C, is
a constant), then under very general assumptions (weaker than (A,),(A,)) there
exists a unique solution of (1.1), (1.2) bounded in each strip 0 £t £ T by
C’explec |x[2] (C’, ¢ positive constants depending on T); see for instance [1].
When (1.3) holds then

[v(t, )| £ C;(L+ £+ [x[?)"* (C, constant);
this bound is sharp, i.e., the reverse inequality holds when f(x) = (1 + [xP)” ,

with a different positive constant C, .

THEOREM 1. Suppose (A)~(A,) hold with &;; = §;; and m Z 2. Then
14 Ju(t, x) = o(t, )| £ C(1 + t + |x [ =92

where C is a constant.
When m =1, set ¢ = 04,, 6§ = 6;,, b = by, and assume:
(AY)) ¢#0 and
C
(1 + |x|)1+6

c | b(x)

= A +|x° 1o ' ‘ =

Ia(x)—o"‘

forsome 0<d<1, C>0.
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THEOREM 2. Suppose m = 1, ¢ = 1 and (A,), (A3), (A;) hold. Then the as-
sertion (1.4) is valid provided

(1.5) fw [%8— - %a’(x)] dx = 0.

Without the assumption (1.5), the assertion (1.4) is generally false even when
a(x) = 1 and b(x) has compact support.
For the proofs, consider the stochastic differential system

(1.6) d&(t) = b(&(D)dt + a(E(D)dw(?)

where w(f) is m-dimensional Brownian motion (see [6] for the relevant theory).
The following estimate is proved by Friedman [2]:

(1.7 E| &) — aw(f)|> < C[1 + E|&0)[> + £]*-°.

Now (see [6]),

u(t,x) = Ef(S()

v(t, x) Ef(x + w(®)

where £,(f) is the solution of (1.6) with &(0) = x. Using (1.7), (1.3) and Holder’s
inequality, (1.4) follows.

The derivation of (1.7) is rather lengthy; it is based on Ito’s calculus and on
the construction of comparison functions.

EXTENSIONS.
1) If m = 3 and § > 1 in the condition (A,), then the assertion (1.4) can be
replaced by the stronger assertion:
Iu(t,x) - v(t,x)| <C.
2) If 0 <d <% then
(1.8) E|&H) — aw(t)|* < C[1 + E|&0) [* + 2]*°.

Indeed, this can be proved by a straightforward extension of the proof of (1.7).
The estimate (1.8) yields extension of Theorems 1, 2 (with the same assertion
(1.4)) to the case where 2 <y < 4, provided 0 < 6 < }. Similarly one can deal
with the case y > 4.

3) The estimate (1.7) holds also in case & is degenerate, provided 56* has at
least two positive eigenvalues. This leads to a corresponding extension of Theorem

1 in case 66* = (d;;) where g;; = 1if i =j = 1,2,---,d and d;; = 0 otherwise;
dz?2.
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4) The estimate (1.7) was proved (in [2]) for general equations
1.9 di(t) = b(t, L)t + a(t, L()aw(®)

where b(t, x), o(t,x) satisfy the same bounds as in (A,), uniformly with respect
to t. This leads to estimates for the Cauchy problem with time-dependent co-
efficients.

5) The mesthod of proving (1.7) can be extended to other equations. For
example, if for some constant vector 1, the functions

6,(t,x) = a;(t,x + Ar)
bit,x) = blt,x+it)— 2
satisfy the same conditions as in (A,), then
E|&@) - —aw®)|* < CIL+E|&O) > + ]*-°.

This leads to further estimates for the Cauchy problem.

2. Degenerate parabolic equations

In case (a;(x)) is degenerate in R™, entirely different asymptotic behavior
may occur. Suppose there are a finite number of disjoint sets G, -, G, in R™,
of which Gy, -+, G,, consist of points z,,--,z,, and the G; (ko+1=Zj < k)
are closed bounded domains with C* boundary 0G;. Assume:

(By) o;(%), b(x) (1 £i, j < m) are uniformly Lipschitz continuous. If
1 £ h £ ko then o,(z,) =0, b(z) =0. If ke +1 S h =k,

2.1 ¥ a;,vv; =0 on 8G,,
ij=1
m azp
2.2) Gw+31 2 oa ' =0 on 0G,,

j=1 H 6xiaxj-

where p,(x) = dist.(x,0G,) (x¢intG,), v is the outward normal to 0G,, and
aii = E;"=1 o-iro-jr'
Let G = R"— (J4%_,G;. If o;; are C! functions in a neighborhood of G,

and if (2.1) holds, then (2.2) is equivalent to

2.3) 3 {bi— 1 X a"“’}v,:o;
=1 7
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that is, 0G, belongs to the part £,, of the boundary of G (by the notation of [7]).
Let R(x) be a C? function in G, coinciding with p,(x) in a G-neighborhood
of 0G,, coinciding with |x| near oo and positive elsewhere. Let

i=1 161 i,j=1 i}'axlaxj’
1 o
2.4) Q== (@ - ﬁ).

We assume:

(B,) For some 5 > 0 sufficiently small,
. . 1
(2.5) 0(x) <0 if p(x)<n (L Sh < k) or 1f|x'>ﬁ.

(B3) If n = R(x) £ 1/n,

(.6 2 a5 F >0 i v.rem) # 0,
ij= 1 J
and i O*R(x)

U=1a” p 6 >0 if y.R(x) =0,
(B,) The functions

ooy, Pay b,
ox; * 0x;0x;  0x;

are locally Hslder continuous, and

. 2, .
5 l oa;; <c, X 0%ay; -3 6_b' < C (C constant).
0 ax; i 0%0x; i 0%

Consider the Cauchy problem (1.1), (1.2) and suppose:

(Bs) f(x) is continuous, | f(x)|

c(L+ ‘xl ) for some positive constants
C, o and

f =const. = f, on 8G; (kg +1 £iZ k).
Let f; = f(z) for 1 £ i £ k,.
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THEOREM 3. Suppose (B)«(Bs) hold, and denote by u(t,x) the solution of
the Cauchy problem (1.1), (1.2). If xe G, then u(t,x) is independent of the
restriction of f to \Jf_i,+1Gy, and

k k
hm u(ta x) = Z flpt(x) pi(x) g 0’ Z pi(x) =1
i=1 i=1

t=>co

where p(x) is the probability that dist.({(f),0G;) > 0 as t - oo, when &(0) = x,
The p,(x) are weak solutions of Lu =0 in G.
The theorem is a consequence of the following result (Friedman and Pinsky
[4]): Under the assumptions of Theorem 3, a.s. &(f)e G for all t > 0 and

P{lim R(&(f)) =0} = 1.

t—ow
ExTENsION. Theorem 3 extends to the case where p,(x), foreach k, + 1 < h <k,
is a C! function that is piecewise C>. This is the case when G, is a convex body
with piecewise C* boundary, or when G, is a surface of dimension < m — 1
with C* boundary.

3. Degenerate parabolic equations with m = 2

For m = 2 the angular behavior of £(f) can be studied. This should lead to
more precise results than in Theorem 3 whereby either the stability condition
(2.5) is weakened or the restriction f = const. on G; (ko + 1 < i < k) is removed.
We shall give here some results in the special case corresponding to linear sto-

chastic equations, i.e.,
2 2
! 1
aij(x) = X 0;iXps b(x) = = bix,.
i=1 =1

Thus, ko =k =1 and G = G, = {0}.

Let
A = (cos @, sin ), A* = (—sin ¢, cos ¢),
oy = (o), B= (b)),
5¢) = { =i oh 2P
@) = (BA, A — (a()A, 1.
Assume:

(C,) Either (i) #(¢) # 0 for all ¢, and [3*(b(¢)/52($))dp # 0; or (ii) () £ 0

&(¢) is not everywhere positive; then &(¢) has precisely two (not necessarily
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distinct) zeros ¢, ¢, in the interval [0,7); we require that either (B, ;") >0
for i =1,2, or (BA;, A7) <0 for i =1,2, where 1, =(cos¢;,sing,), i;* =
(—sin ¢, cos ¢;).

Let f(x) = g(¢) where x = (rcos ¢, rsin¢). The following theorem is proved
in Friedman and Pinsky [3]:

TueoreM 4. If (C,) holds then lim,, u(t,x) exists for any x; for x # 0,

lim u(f,x) = E f Tlg(qﬁ(t))dt

t= Y

where ¢(t) is the solution of
dp = b(¢p)dt +6(¢)dw,
and T, is the time it takes ¢(t) to change by 2x.
If
0(4) = (BA, Ay + tra(d) — (a(DA, 4> >0

or all 1, then the theorem remains true for f(x) = g(r, ¢). where g(r, d) — g(¢)
as r —» oo, uniformly with respect to ¢.

The proof of Theorem 4 is based on ana]yziﬂg the Laplace transform

e "u(t,x)dt, using the strong Markov property and the facts that T, has
finite expectation and that it is not it concentrated on a lattice (i.e., Eexp(iAT;) # 1
for any real A # 0). The tauberian theorem of Landau-Ikehara is applied.

Assume, now, instead of (C,):

(C,) 6(¢p) =0 for ¢ = ¢y, ¢, where 0 £ ¢, <¢, <m, and G(¢) # 0 in
(¢4, ,); further, (BA;, AT> >0, (Bl Ay) <0.

This implies (see [3]) that, for x in the sector ¢, < ¢ < ¢, , the solution u(t, x)
depends only on the initial data f in the same sector.

Let ¢; < ¢y < ¢ < ¢, and denote by T, 5 the least time it takes ¢(t) to go
from ¢, to ¢, after intersecting ¢ = ¢ . By a proof similar to that of Theorem 4
we have:

TueoREM 4'. If (C,) holds and x = (rocos g, rosing,), then lim,., , u(t,x)

exists and

T¢od
lim u(t,x) = E J; g(p(t)dt.

0



Vol. 13, 1972 PROBABILISTIC METHODS 63

If O(4) > 0 for all A, then the theorem remains true for f(x) = g(r, ¢), pro-
vided g(r, ¢) —» g(¢) as r — oo, uniformly with respect to ¢.

4. Degenerate elliptic equations in the plane

The probabilistic methods developed in [3], [4] (which yield Theorems 3, 4)
can also be applied to obtain new results for the Dirichlet problem for degenerate
L, in case m = 2. Consider the elliptic equation

@.n Lu=0inD (m=2)

where D is a bounded domain. Assume that the boundary of D consists of three
parts: Z3,%,, X, asin Kohn and Nirenberg [7]. Suppose further thatX; =X, xZ;,
where Q(x) <0 near X, (Q(x) is defined in (2.4)), and Q(x) >0 near Z,,.
We also assume that ¥, UZX, is closed and disjoint from %, .

Under suitable assumptions on ¢;(x), b{(x), we determine a finite number
of distinguished boundary points {;,---,{, on Z;,. A small D-neighborhood of
¢, is divided into two domains N;,N; by a ‘‘transversal’’ curve initiating at
¢;,. We now consider the problem of solving (4.1) subject to the boundary con-

ditions:
u=fonZX,UZ; u(x)—>f+(Zi) if xeNi’L,x—> &
u(x) > f7(C) if xeN; , x> (1£i=Zp),

where f and f7(), f((;) are given. It can be proved [5] that this Dirichlet
problem has a unique solution in C*(D). One can allow L to degenerate (in a

“4.2)

certain manner) in a small neighborhood of a finite number of curves lying in D.

In a recent paper, Stroock and Varadhan [8] considered the Dirichlet problem
(in any number of dimensions) by probabilistic methods. They prove the exis-
tence and uniqueness of a solution taking prescribed boundary values on X, UZ;.
They assume that when the term c(x)u does not occur in Lu (as it is in our case)
then sup, .p E(t) < 00 where 7 is the exit time of £(f). This latter condition is
not satisfied in our case.
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