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ABSTRACT 

Results on the asymptotic behavior of solutions of the Cauchy problem 
Ou/~t = Lu as t ~ o~ are stated, both fornondegenerate and degenerate elliptic 
second order operator L. The Dirichlet problem for degenerate L is also studied. 
The methoJs used depend on a detailed study of the behavior of solutions 
of stochastic differential equations. 

This work is concerned, for the most part, with the asymptotic behavior of 

solutions of  the Cauchy problem for second order (possibly degenerate) parabolic 

equations. The methods used are based on recent results in stochastic differential 

equations. The Dirichlet problem for degenerate elliptic equations is treated 

briefly by the same methods. 

The results of  Section 1 are due to Friedman I-2]; the results of  Sections 2, 3 

are due to Friedman and Pinsky [-3], [-4]. Finally, a detailed account of  the 

results briefly described in Section 4 will appear in a forthcoming paper by Fried- 

man and Pinsky [-5]. 

1. Comparison with the heat equations 

Consider the Cauchy problem 

Ou 1 ~ a,.i(x ) c~2u ~, bi(x) 6qu (1.1) ~ t = L u = ~ i d =  t ~ + i = 1  ~ (t>O'xeRm)" 

(1.2) u(0, x) = f(x) (x ~ Rm). 

We wish to compare the solution u with the solution v of  the heat equation 

t This work was supported partially by National Science Foundation Grant NSF GP- 
28484. 
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~v _ 1 ~ ~Zv 
dt 2 i=1 ~x~ ( t > O ' x ~ R m )  

subject to the same initial condition (1.2). We assume: 

(A1) (aij(x)) is a positive definite matrix for each x,  and aij(x), hi(x) are uni- 

formly H61der continuous and locally Lipschitz continuous. This implies that 

there is an m x m matrix a(x) = (o'ij(x)) satisfying aa* = (aij) (a* = transpose 

of ~r) which is locally Lipschitz continuous. 

(A2) There is a constant matrix 5 = (g~j) such that 

C 
la iJ(x)-~iJ]  ~ ( 1 +  Ix[) n '  

C 
[b,(x)[ __< (l + [x[) l+e 

for some 0 < 5 < 1 ,  C > 0 .  

(A3) For all x ,  2 in R m, 

(1.3) [f(x)-f(yc)[ <= c o l x -  ' ( 0 < ?  < 2, C o > 0 ) .  

I f  f is any continuous function bounded by C, exp[e ] x ]z] for any e > 0 (C, is 

a constant), then under very general assumptions (weaker than (A1),(A2)) there 

exists a unique solution of (1.1), (1.2) bounded in each strip 0 < t < T by 

C 'exp[c  I xl z] (c ' ,  c positive constants depending on T); see for instance [1]. 

When (1,3) holds then 

[v(t,x) l _--< C1(1 q- tA-Ixl2)  r/2 (C 1 constant); 

this bound is sharp, i.e., the reverse inequality holds when f ( x )  = (1 + [ x  12) r/2, 

with a different positive constant C1. 

THEOREM 1. Suppose (A1)-(A2) hold with 5ij = 5is and m > 2. Then 

(1.4) l u(t, X) -- v(t, X)] ~ C(] --~ t -~- ] X 12) (1-~)?/2 

where C is a constant. 

When m = 1, set a = a11, 5 = 511, b = bl ,  and assume: 

(A~) ~ # 0  and 

__< 
(1 +1xl , '  ~(x) -< ( l+ lx  

for some 0 < 5  < 1, C > 0 .  
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THEOREM 2. Suppose m = 1, ~ = 1 and (A0, (A2), (A3) hold. Then  the as- 

sertion (1.4) is valid provided 

Without the assumption (1.5), the assertion (1.4) is generally false even when 

a(x) - 1 and b(x) has compact support. 

For the proofs, consider the stochastic differential system 

(1.6) d4(0 = b(4(t))dt + a(~(t))dw(t) 

where w(t) is m-dimensional Brownian motion (see [6] for the relevant theory). 

The following estimate is proved by Friedman [2]: 

E I ~(t) - ~w(t)12 =< C[1 + E] 4(0)[2 + t ] , -o .  (1.7) 

Now (see [6]), 
u( t ,x)  = Ef(4x(t)) 

v(t, x) = E f ( x  + w(t)) 

where ~=(t) is the solution of (1.6) with 4(0) = x. Using (1.7), (1.3) and HSlder's 

inequality, (1.4) follows. 

The derivation of (1.7) is rather lengthy; it is based on Ito's calculus and on 

the construction of comparison functions. 

EXTENSIONS. 

1) If  m > 3 and 6 > 1 in the condition (A2), then the assertion (1.4) can be 
replaced by the stronger assertion: 

]u(t, x) - v(t, x) t _<_ c .  

2) If 0 < 6 < ½  then 

(1.8) e]~( t )  - ~w(t)]4 < C[1 + E ] 4(0)[" + t2] ~-~ . 

Indeed, this can be proved by a straightforward extension of the proof of (1.7). 

The estimate (1.8) yields extension of Theorems 1, 2 (with the same assertion 

(1.4)) to the case where 2 < y < 4, provided 0 < 6 < ½. Similarly one can deal 

with the case y > 4. 

3) The estimate (1.7) holds also in case ff is degenerate, provided ~6" has at 

least two positive eigenvalues. This leads to a corresponding extension of Theorem 

1 in case ~6" = (du) where dij = 1 if i = j  = 1,2, . . . ,d and d,: = 0 otherwise; 
d > 2 .  
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4) The estimate (1.7) was proved (in [2]) for general equations 

(1.9) d~(t) = b(t, ~(t))dt + ~r(t, ~(t))dw(t) 

where b(t, x) ,  a(t, x) satisfy the same bounds as in (A2), uniformly with respect 

to t.  This leads to estimates for the Cauchy problem with time-dependent co- 

efficients. 

5) The method of proving (1.7) can be extended to other equations. For 

example, if for some constant vector ~,, the functions 

#~j(t, x) = trij(t, x + 20 

hi(t, x) = bi(t, x + 20 - ~, 

satisfy the same conditions as in (A2), then 

E l i ( t )  - ~.t - 8w(t)] z < C[1 + E 14(0)I 2 + t] 1-~ • 

This leads to further estimates for the Cauchy problem. 

2. Degenerate parabolic equations 

In case (aij(x)) is degenerate in R m , entirely different asymptotic behavior 

may occur. Suppose there are a finite number of disjoint sets G1, "", Gk in R m, 

of which G1, '" ,  Gko consist of points z l , ' " ,  Zko, and the Gj (k o + 1 <= j <= k) 

are closed bounded domains with C 3 boundary c~Gj. Assume: 

(B 0 ~rij(x), bi(x ) (1 __< i,  j _-< m) are uniformly Lipschitz continuous. I f  

1 =< h < /c o then a~j(Zh) = 0 ,  bi(Zh) = 0 .  If  k o + 1  =< h < k, 

(2.1) ~ aijviv j = 0 on ~Gh, 
i j = l  

m 

(2.2) (b, v) + ½ ~ j~= 1 aij ~?x~ 02phOXJ - -  0 o n  OGh, 

where ph(x )=  dist.(x, OGh) (x ¢intGh), v is the outward normal to t?Gh, and 

aij = Z m= ~ % % .  

Let G = R m k -- ~.J j = 1 Gj.  If  trij are C 1 functions in a neighborhood of OG h 
and if (2.1) holds, then (2.2) is equivalent to 

(2.3) ~ I b i -  ½ 
Oa~j ~ 

, = 1  = 0 ;  
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that is, OG h belongs to the part £,2 of  the boundary of G (by the notation of [7]). 

Let R(x) be a C 2 function in G, coinciding with ph(X) in a G-neighborhood 

of OGh, coinciding with x[ near m and positive elsewhere. Let 

d = 
t , j = l  

OR OR 
aiJoxi Oxj' 

OR 02R 
a~ = ~bi_~xt+ ½ ~ at ' , i =, ~,j = z OxiOxj 

(2.4) 

We assume: 

(B2) For some q > 0 sufficiently small, 

1 
(2.5) Q(x) < 0 if ph(x) < t/ (1 --< h -< k) or if ] x [ > - .  

t/ 

(B3) If  r/ < R(x) < 1/q, 

, ,0R(x) OR(x) 
(2.6) i.~ , a'Ax) ~ Oxy > 0 if VxR(x) # 0, 

~' 02R(x) 
and ~, aij 

~,j = 1 OxiOxj 

(B4) The functions 

- - - - - - > 0  if vxR(x) = 0 .  

Oaij 02aij Obt 
Ox~ ' OxiOx j ' Oxi 

are locally H61der continuous, and 

] Oaij ] 02aij ~i ~bi 
<=c,  Z = i,j OxiOxj " ff~i < C (C constant). 

Consider the Cauchy problem (1.1), (1.2) and suppose: 

(Bs) f (x)  is continuous, I f(x)[  < C(1 + Ix I ~) for some positive constants 
C, 0~ and 

f = const. = f~  on aG i (k o + 1  < i-< k). 

Let fi =f ( z i )  for 1 -< i <  k o. 
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THEOREM 3. Suppose (B1)-(B5) hold, and denote by u(t ,x) the solution of 

the Cauchy problem (1.1), (1.2). I f  x ~ G ,  then u(t ,x) is independent of the 
k a restriction o f f  to [Jh=ko-l-1 h, and 

k k 

lira u( t ,  x) = ~, f iP i (X)  p i ( x )  > O, ~ p i ( x )  = 1 
t ~ o o  i = 1  i = 1  

where pi(x) is the probability that dist.(~(t), OGg) ~ 0 as t --, oo , when 4(0) = x. 

The pi(x) are weak solutions o f  Lu = 0 in G.  

The  theorem is a consequence of  the following result (Fr iedman and Pinsky 

[4]):  Under  the assumpt ions  of  Theorem 3, a.s. ~(t) e G for  all t > 0 and 

P{l im R(~(t)) = 0} = 1. 
t--+ o0 

EXTENSION. Theo rem 3 extends to the case where ph(X), for  each k o + 1 < h < k, 

is a C t funct ion that  is piecewise C 2 . This is the case when G h is a convex body  

with piecewise C 3 boundary ,  or when Gh is a surface o f  dimension < m - 1 

with C 3 boundary .  

3. Degenerate parabolic equations with m = 2 

For  m = 2 the angular  behavior  of  ~(t) can be studied. This should lead to 

more  precise results than in Theorem 3 whereby either the stability condit ion 

(2.5) is weakened or the r e s t r i c t i on f  = const,  on G~ (k o + 1 < i < k) is removed.  

We shall give here some results in the special case corresponding to linear sto- 

chastic equations,  i.e., 

2 

~ij(x) Z a i jX  l , 
l = l  

Thus,  ko = k = 1 and G = G 1 = {0}. 

Let  

Assume:  

2 

bi(x ) ~, t .= b i x  l • 
/ = 1  

2 = (cos ¢, sin ¢ ) ,  2"  = ( -  sin ¢, cos ~b), 

l ~j = ( ~ j ) ,  o = (b~), 

~(~) ( 2 = E j=l  (a j ; t ,F)2}  ~ 

b(ck) = ( B 2 , 2  x)  - ( a ( 2 ) 2 , 2 " ) .  

(C1) Either  (i) ~(~b) ¢ 0 for  all ~b, and fg=(b(4))/8=(qS))d~ ~ 0; or  (ii) ~(~b) ~ 0 

8(~b) is not  everywhere posit ive; then 8(~b) has precisely two (not necessarily 
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distinct) zeros ¢1, ¢2 in the interval [0,rc); we require that either (B2i,2i L) > 0 

for i =  1,2, or (B2i,2-~)<0 for i =  1 ,2 ,  where 2 ~ = ( c o s ¢ i , s i n ¢ i ) , 2 ~ =  

( -  sin ¢i, cos ¢i). 

Let f (x)  = g(¢) where x = (rcos ¢, r sin ¢).  The following theorem is proved 

in Friedman and Pinsky [3]: 

THEOREM 4. I f  (C1) holds then limr.~U(t,x) exists for any x; for x ¢: 0, 

f? lim u(t,x) = E g(¢(t))dt 

where ¢(t) is the solution of 

de = b(¢)dt +~(¢)dw, 

and T1 is the time it takes ¢(t) to change by 2~. 

If  

(2(2) - (B2, 2} + ½ tr a(2) - (a(2);t, 2} > 0 

or all 4, then the theorem remains true for f (x)  = g(r, ¢ )  where g(r, ¢) ~ g(¢) 

as r ~ oo, uniformly with respect to ¢ .  

The proof of Theorem 4 is based on analyzing the Laplace transform 

f~e-Stu(t ,x)dt,  using the strong Markov property and the facts that T 1 has 

finite expectation and that it is not it concentrated on a lattice (i.e., Eexp(i2T1) ~ 1 

for any real 2 ¢ (3). The tauberian theorem of Landau-Ikehara is applied. 

Assume, now, instead of (C1): 

(C2) ~ ( ¢ ) =  0 for ¢ = ¢1, ¢2 where 0 =< ¢1 < ¢2 < n ,  and ~ ( ¢ ) ¢  0 in 

(¢1,¢2); further, (B21,2~-) > 0, (B22,2~-) < 0. 

This implies (see [3]) that, for x in the sector ¢1 < ¢ < ¢2,  the solution u(t,x) 

depends only on the initial data f in the same sector. 

Let ¢1 < ¢o < ~; < ¢2 and denote by T~o ~ the least time it takes ¢(t) to go 

from ¢o to ¢o after intersecting ¢ = ~ .  By a proof similar to that of Theorem 4 

we have: 

THEOREM 4'. / f  (C2) holds and x = (r o cos ¢o,  ro sin ¢o), then limt-.~o u(t,x) 

exists and 

lim u(t,x) = E | g(¢(t))dt. 
t -~  oO dO 
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If  Q(A) > 0 for all 2, then the theorem remains true for f ( x )  = 9(r, (o), pro- 

vided 9(r, (o) ~ 9(q~) as r ~ oo, uniformly with respect to q~. 

4. Degenerate elliptic equations in the plane 

The probabilistic methods developed in [3], I-4] (which yield Theorems 3, 4) 

can also be applied to obtain new results for the Dirichlet problem for degenerate 

L, in case m = 2. Consider the elliptic equation 

(4.1) Lu = 0 i n  D ( m = 2 )  

where D is a bounded domain. Assume that the boundary of D consists of three 

parts: Y~3, E2, E1 as in Kohn and Nirenberg [7]. Suppose further that Z1 = Z1 a × Z~ 2 

where Q(x)< 0 near Z12 (Q(x) is defined in (2.4)), and Q(x)> 0 near z l l .  

We also assume that Z2 t3 Z3 is closed and disjoint from E1. 

Under suitable assumptions on aij(x), bi(x), we determine a finite number 

of distinguished boundary points ~ ,  .-.,~p on Z12. A small D-neighborhood of 

(i is divided into two domains N~ +, N~- by a "transversal" curve initiating at 

~ .  We now consider the problem of solving (4.1) subject to the boundary con- 

ditions: 

u = f o n E z U Z 3 ;  u(x)~f+((i) i f x ~ N  +,x~(i; 
(4.2) 

u(x) ~ f - ( ( i )  if x e N ; ' ,  x ~ (i (1 <_ i =< p), 

where f and f+((1), f - ( ~ )  are given. It can be proved [5] that this Dirichlet 

prolSlem has a unique solution in C2(D). One can allow L to degenerate (in a 

certain manner) in a small neighborhood of a finite number of curves lying in D. 

In a recent paper, Stroock and Varadhan [8] considered the Dirichlet problem 

(in any number of dimensions) by probabilistic methods. They prove the exis- 

tence and uniqueness of a solution taking prescribed boundary values on  ]~2 ~,1 ]~3. 

They assume that when the term c(x)u does not occur in Lu (as it is in our case) 

then SUpx~oEx(~) < oo where z is the exit time of ~(t). This latter condition is 

not satisfied in our case. 
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